Scientists from Weill Cornell Medical College and Houston Methodist have found that a gene previously unassociated with breast cancer plays a pivotal role in the growth and progression of the triple negative form of the disease.
Their research suggests that targeting the gene may be a new approach to treating the disease.
About 42,000 new cases of triple negative breast cancer (TNBC) are diagnosed in the United States each year, about 20 percent of all breast cancer diagnoses. Patients typically relapse within one to three years of being treated.
Senior author Dr. Laurie H. Glimcher, the Stephen and Suzanne Weiss Dean of Weill Cornell Medical College, wanted to know whether the gene – already understood from her prior work to be a critical regulator of immune and metabolic functions – was important to cancer’s ability to adapt and thrive in the oxygen- and nutrient-deprived environments inside of tumors.
Using cells taken from patients’ tumors and transplanted into mice, Dr. Glimcher’s team found that the gene, XBP1, is especially active in triple negative breast cancer, particularly in the progression of malignant cells and their resurgence after treatment.
“Patients with the triple negative form of breast cancer are those who most desperately need new approaches to treat their disease,” Dr. Glimcher, who is also a professor of medicine at Weill Cornell said.
“This pathway was activated in about two-thirds of patients with this type of breast cancer. Now that we better understand how this gene helps tumors proliferate and then return after a patient’s initial treatment, we believe we can develop more effective therapies to shrink their growth and delay relapse,” the researcher added.
The study is published in the journal Nature.
Source: yahoo news